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What is graph matching?

Formulation

Consider observing two graphs, G1 = (V1,E1), G2 = (V2,E2).
The classical graph matching formulation is to find a map π : V1 7→ V2,
that minimizes the symmetric difference between

π(E1) = {(π(i), π(j)) : (i , j) ∈ E1} and E2.
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Should we do graph matching?

Matching graphs from different modalities

Calhoun and Sui 2016

Matching a social network to a co-purchasing network
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Should we do graph matching

Matching across topics and time periods
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A first step: match embeddings

Zhang et al. 2019

Idea

1 Represent graphs as point clouds

2 Align point clouds
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Shuffled Linear Regression - Model

Model:
Y = Π∗XR + E ,

where Π∗ ∈ Pn is an unknown permutation matrix.

Pananjady et al. 2016; Pananjady et al. 2017; Flammarion et al. 2016;
Collier and Dalalyan 2016
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Shuffled Linear Regression - Applications

Pose and correspondence estimation

Goal: find similar objects across images from different perspectives

(Pananjady et al. 2017)

Header-free communication

Goal: Recover signal origins without without sending location
information

Daniel Sussman, Qian Wang (Boston University) Shuffled TLS 7 / 29



Shuffled Linear Regression - Estimation

OLS estimate:

(Π̂, R̂) = arg min
Π∈Pn,R∈Rp×p

∥Y − ΠXR∥2F .

permutation 1 permutation 2 permutation 3 permutation 4 permutation 5
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Shuffled Total Least Squares Regression

A more realistic model

Model:

Y1 = X + E1 (1)

Y2 = Π∗XR + E2,

Permutation: Π∗ ∈ Pn

Design: X ∈ Rn×p

Coefficient: R ∈ Rp×p

Noise: E1,E2 ∈ Rn×p

Given the observations (Y1,Y2), estimate Π∗.
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Shuffled Total Least Squares Regression

Total Least Squares (TLS) Estimator

The TLS estimator for
errors-in-variables regression:

min
Ŷ1,Ŷ2∈Rp×p

∥[Y2|Y1]− [Ŷ2|Ŷ1]∥2F

s.t. rank([Ŷ2|Ŷ1]) ≤ p.
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Shuffled Total Least Squares Regression

Shuffled TLS Estimator

Let

YΠ = [Y2|ΠY1], MΠ = [Π∗XR|ΠX ], and EΠ = [E2|ΠE1]

Write model (1) as

YΠ = MΠ + EΠ, (2)

The shuffled TLS estimator is

Π̂ = argmin
Π∈Pn

2p∑
i=p+1

σ2
i (YΠ). (3)
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Shuffled Total Least Squares Regression

Evaluation Method and Identifiability Issue

The Hamming distance

dH(Π̂,Π
∗) = #{i |Π̂(i) ̸= Π∗(i)},

The normalized quadratic loss

1

np
∥Π̂X − Π∗X∥2F .
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Shuffled Total Least Squares Regression

Evaluation Method and Identifiability Issue

Example (Identifiability Issue of the Shuffled TLS Estimator)

Consider a noiseless case when E1 = E2 = 0, Π∗ = In, R = Ip, let n = 10, and

Y1 = Y2 = X =

[
15 −15
15 15

]
.

Normalized Proscrustes quadratic loss:

1

∥X∥2F
min

Q∈O(p)
∥Π∗X − Π̂XQ∥2F .

Lemma

Assume the condition number κ(X ) = 1, we have the relationship

min
Q∈O(p)

∥Π∗X − ΠXQ∥2F ≤ 2

2p∑
i=1+p

σ2
i (Π

∗X |ΠX ).
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Shuffled Total Least Squares Regression

Model assumptions and Main Result

We assume the following conditions hold:

Assumption (Design Matrix)

The latent design matrix has condition number κ(X ) = 1.

Assumption (Coefficient Matrix)

σp(R) ≤ 1 and σ1(R) ≥ 1.

Assumption (Noise Variables)

E1i ,E2i ∼i .i .d N(0,Σ) for i ∈ [n].
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Shuffled Total Least Squares Regression

Main Result

Theorem

For the statistical model (1), under the assumptions, the total least
squares estimator Π̂ satisfies

minQ∈O(p) ∥Π∗X − Π̂XQ∥2F
∥X∥2F

≤ 4λ1(Σ)

σ2
p(R)

(1 + ηan)

[
8
√
2σ1(R)

p
√
n

∥X∥F
+

np

∥X∥2F

]
, (4)

where an =
√

tr(Σ)
λ1(Σ)

log(n)
cn , with probability greater than

1− n−η2 ,

where c is at least 1
32 .
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Shuffled Total Least Squares Regression

Main Result

Define the signal-to-noise ratio as snr =
∥X∥2F /n
tr(Σ) .

The upper bound is approximately

c1(R)

√
tr(Σ)

snr
+ c2(R)

1

snr

Xij ∼ N(0, 1),Eij ∼ N(0, σ2), snr∼ 1
σ2

cσ2,

where c = c1(R)
√
p + c2(R).

For the Procrustes loss to go to zero, snr needs to go to infinity.
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Shuffled Total Least Squares Regression

Result Comparison

Our bound:
cσ2

Pananjady et al. 2017

Y = Π∗XR∗ + E ,

For p < log(n):

1

np
∥Π̂XR̂ − Π∗XR∗∥2F ≤ c1σ

2(
p

n
+ 1).
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Shuffled Total Least Squares Regression

Result Comparison

Our bound:
cσ2

Flammarion et al. 2016

Y = Π∗X ∗ + E ,

where the columns of X ∗ is unimodal.

1

np
∥Π̂X̂ − Π∗X ∗∥2F ≤ σ2(1 +

log(n)

p
).
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Shuffled Total Least Squares Regression

Permutation Recovery in Shuffled Linear Regression is
NP-hard

min
Π

min
R

∥ΠXR − Y ∥2F

= min
Π

∥ΠX (XTX )−1XTΠTY − Y ∥2F

= min
Π

tr(Π(ZTZ − 2Z )ΠTYY T ),

where Z = X (XTX )−1XT .

Shuffled OLS is equivalent to a QAP
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Shuffled Total Least Squares Regression

The Alternating LAP/OLS Algorithm (ALOA)

Model:
Y2 = Π∗Y1R + E2

Algorithm:
Iterate between

Step 1: given Π̂, estimate R via OLS.

Step 2: given R̂, estimate Π̂ by solving a LAP, assigning the n rows of
Y2 to the n rows of Y1R̂.

Cij = ∥Y2i − (Y1R̂)j∥2F .
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Shuffled Total Least Squares Regression

The Alternating LAP/TLS Algorithm, ALTA

Model:

Y1 = X + E1,Y2 = Π∗XR + E2

Algorithm:
Iterate between

Step 1: given Π̂, estimate (X ,R) via TLS.

Step 2: given (X̂ , R̂) ... ?

argminΠ∈Pn

∑2p
i=p+1 σ

2
i ([Y2|ΠY1]), does not depend on (X̂ , R̂).

How do we define a LAP?

ALTA 1:
C

(1)
ij = ∥Y2i − R̂T X̂j∥2F + ∥Y1j − X̂i∥2F

.

ALTA 2:
C

(2)
ij = min

x∈Rd
∥Y2i − R̂T x∥2F + ∥Y1j − x∥2F
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Simulations and Empirical Studies

Simulation Studies

Initiate all algorithms at Π = In.
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Simulations and Empirical Studies

Simulation Studies

Increase the signal-to-noise ratio via decreasing the noise like 1
n . (CPD,

(Myronenko and Song 2010).)
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Simulations and Empirical Studies

Simulation Studies

Initialize further away from the truth.
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Extension and Future Research

Contributions

Propose estimate Π̂ based on the TLS method.

Provide an upper bound on the Procrustes quadratic loss.

Many works in the shuffled linear regression setting, less so in the
shuffled TLS regression.
Perhaps due to the difficulty in analyzing singular values compared with
Frobenius norm.

Approximate Π̂ via ALTA.

The permutation recovery problem continuous to be an open challenge
to researchers of various fields.
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Extension and Future Research

Potential Extension and Future Research

Relax the assumptions:

κ(X ) = 1.

Y1 = XR1 + E1

Y2 = Π∗XR2 + E2

Allow dim(R1) ̸= dim(R2)?

E1i ,E2i ∼i.i.d N(0,Σ).

1 E1i ∼ N(0,Σ1),E2i ∼ N(0,Σ2)
2 E1 correlated with E2 (This can happen when the two graphs A and

B are correlated.)

Extend theorem to big p, say, p > log(n).
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Extension and Future Research

Thanks!

Questions?
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